Solving Systems of Linear Equations

Philipp Warode

September 30, 2019

Example:
3 resources R_{1}, R_{2}, R_{3}
4 different products $P_{1}, P_{2}, P_{3}, P_{4}$

$$
\boldsymbol{A}=\begin{array}{c|cccc}
& P_{1} & P_{2} & P_{3} & P_{4} \\
\hline R_{1} & 1 & 1 & 2 & 1 \\
R_{2} & 2 & 1 & 1 & 0 \\
R_{3} & 1 & 0 & 1 & 2
\end{array} \quad \boldsymbol{b}=\begin{array}{l|l}
R_{1} & 8 \\
R_{2} & 6 \\
R_{3} & 8
\end{array}
$$

Question: How many products can be produced if we have b many resources in stock?

Example:
3 resources R_{1}, R_{2}, R_{3}
4 different products $P_{1}, P_{2}, P_{3}, P_{4}$

$$
\begin{aligned}
\left(\begin{array}{llll}
1 & 1 & 2 & 1 \\
2 & 1 & 1 & 0 \\
1 & 0 & 1 & 2
\end{array}\right) \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) & =\left(\begin{array}{l}
8 \\
6 \\
8
\end{array}\right) \\
\boldsymbol{A} & \cdot \boldsymbol{x}=\boldsymbol{b}
\end{aligned}
$$

Question: How many products can be produced if we have b many resources in stock?

Gaussian elimination algorithm

Objective: Solve $\boldsymbol{A x}=\boldsymbol{b}$

1. Step Create augmented matrix $[\boldsymbol{A} \mid \boldsymbol{b}]$
2. Step Use one of the following operations
(a) Swap positions of two rows
(b) Multiply one row by a non-zero scalar factor
(c) Add one row to a (scalar multiple) of another row
to obtain (reduced) row echelon form
3. Step Obtain the solutions of the equation

$$
\left(\begin{array}{ccccccc|c}
1 & * & 0 & * & \cdots & 0 & * & b_{1} \\
0 & 0 & 1 & * & \cdots & 0 & * & b_{2} \\
0 & 0 & 0 & 0 & \cdots & 0 & * & b_{3} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & * & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & * & b_{r-1} \\
0 & 0 & 0 & 0 & \cdots & 1 & * & b_{r} \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & b_{r+1} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & 0 & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & b_{n}
\end{array}\right)
$$

$$
\left(\begin{array}{ccccccc|c}
1 & * & 0 & * & \cdots & 0 & * & b_{1} \\
0 & 0 & 1 & * & \cdots & 0 & * & b_{2} \\
0 & 0 & 0 & 0 & \cdots & 0 & * & b_{3} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & * & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & * & b_{r-1} \\
0 & 0 & 0 & 0 & \cdots & 1 & * & b_{r} \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & b_{r+1} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & 0 & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & b_{n}
\end{array}\right)
$$

-r pivots (1)

$$
\left(\begin{array}{ccccccc|c}
1 & * & 0 & * & \cdots & 0 & * & b_{1} \\
0 & 0 & 1 & * & \cdots & 0 & * & b_{2} \\
0 & 0 & 0 & 0 & \cdots & 0 & * & b_{3} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & * & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & * & b_{r-1} \\
0 & 0 & 0 & 0 & \cdots & 1 & * & b_{r} \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & b_{r+1} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & 0 & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & b_{n}
\end{array}\right)
$$

- rpivots (1)
- All elements below, above and left of pivots are zeros

$$
\left(\begin{array}{ccccccc|c}
1 & * & 0 & * & \cdots & 0 & * & b_{1} \\
0 & 0 & 1 & * & \cdots & 0 & * & b_{2} \\
0 & 0 & 0 & 0 & \cdots & 0 & * & b_{3} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & * & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & * & b_{r-1} \\
0 & 0 & 0 & 0 & \cdots & 1 & * & b_{r} \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & b_{r+1} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & 0 & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & b_{n}
\end{array}\right)
$$

- rpivots (1)
- All elements below, above and left of pivots are zeros

■ The number of pivots $0 \leq r \leq n$ is called rank of the matrix A

Reduced row echelon form

Question: How many solutions does the System $A x=b$ have?
Reduced row echelon form:

Reduced row echelon form

Question: How many solutions does the System $A x=b$ have?
Reduced row echelon form:

■ No solution if $r<n$ and $b_{i} \neq 0$ for $i \in\left\{r+1, \ldots, b_{n}\right\}$

Question: How many solutions does the System $A x=b$ have? Reduced row echelon form:

$$
\text { n rows }\left\{\begin{array}{ccccccc|c}
\left(\begin{array}{ccccccc}
1 & * & 0 & * & \cdots & 0 & * \\
0 & 0 & 1 & * & \cdots & 0 & * \\
0 & b_{1} \\
0 & 0 & 0 & 0 & \cdots & 0 & * \\
b_{2} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & * \\
b_{3} \\
0 & 0 & 0 & 0 & \cdots & 0 & * \\
0 & 0 & 0 & 0 & \cdots & 1 & * \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right. & b_{r-1} \\
b_{r+1} \\
\vdots \\
b_{n}
\end{array}\right)
$$

- No solution if $r<n$ and $b_{i} \neq 0$ for $i \in\left\{r+1, \ldots, b_{n}\right\}$

■ Unique solution if $r=m$ and $b_{r+1}=\ldots=b_{n}=0$

Question: How many solutions does the System $A x=b$ have? Reduced row echelon form:

$$
\text { n rows }\left\{\begin{array}{ccccccc|c}
\left(\begin{array}{ccccccc}
1 & * & 0 & * & \cdots & 0 & * \\
0 & 0 & 1 & * & \cdots & 0 & * \\
b_{1} \\
0 & 0 & 0 & 0 & \cdots & 0 & * \\
b_{2} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & * \\
b_{3} \\
0 & 0 & 0 & 0 & \cdots & 0 & * \\
0 & 0 & 0 & 0 & \cdots & 1 & * \\
b_{r-1} \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right. & b_{r+1} \\
\underbrace{}_{m \text { columns }} & b_{n}
\end{array}\right)
$$

- No solution if $r<n$ and $b_{i} \neq 0$ for $i \in\left\{r+1, \ldots, b_{n}\right\}$

■ Unique solution if $r=m$ and $b_{r+1}=\ldots=b_{n}=0$
■ Infinitely many solutions if $r<m$ and $b_{r+1}=\ldots=b_{n}=0$

Examples:

$$
\begin{gathered}
\left(\begin{array}{lll|l}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 4
\end{array}\right) \rightarrow \begin{array}{l}
x_{1}=2 \\
x_{2}=3 \\
x_{3}=4
\end{array} \\
\begin{array}{c}
3 \text { pivot variables / rank } 3 \\
\left(\begin{array}{lll|c}
1 & 0 & 1 & -2 \\
0 & 1 & 1 & 5 \\
0 & 0 & 0 & 42
\end{array}\right) \rightarrow 0=42 \rightarrow \text { Contradiction } \\
2 \text { pivot variables / rank } 2 \\
\left(\begin{array}{ccc|c}
1 & 0 & -1 & 1 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right) \rightarrow \begin{array}{l}
x_{1}=1+x_{3} \\
x_{2}=2-x_{3}
\end{array} \rightarrow \infty \text {-many solutions } \\
2 \text { pivot variables / rank } 2
\end{array}
\end{gathered}
$$

Consider the following reduced row echelon form

$$
\left(\begin{array}{llll|l}
1 & 1 & 0 & 2 & 3 \\
0 & 0 & 1 & 2 & 1
\end{array}\right)
$$

Consider the following reduced row echelon form

$$
\left(\begin{array}{llll|l}
1 & 1 & 0 & 2 & 3 \\
0 & 0 & 1 & 2 & 1
\end{array}\right)
$$

Consider the following reduced row echelon form

$$
\left(\begin{array}{llll|l}
1 & 1 & 0 & 2 & 3 \\
0 & 0 & 1 & 2 & 1
\end{array}\right)
$$

Solution Space:

$$
L=\left\{\left.\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
3 \\
0 \\
1 \\
0
\end{array}\right)+\lambda_{1} \cdot\left(\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right)+\lambda_{2} \cdot\left(\begin{array}{c}
-2 \\
0 \\
-2 \\
1
\end{array}\right) \right\rvert\, \lambda_{1}, \lambda_{2} \in \mathbb{R}\right\}
$$

Consider the following reduced row echelon form

$$
\left(\begin{array}{llll|l}
1 & 1 & 0 & 2 & 3 \\
0 & 0 & 1 & 2 & 1
\end{array}\right)
$$

Solution Space:

$$
L=\left\{\left.\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
3 \\
0 \\
1 \\
0
\end{array}\right)+\lambda_{1} \cdot\left(\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right)+\lambda_{2} \cdot\left(\begin{array}{c}
-2 \\
0 \\
-2 \\
1
\end{array}\right) \right\rvert\, \lambda_{1}, \lambda_{2} \in \mathbb{R}\right\}
$$

■ Variables with pivot columns $\left(x_{1}, x_{3}\right)$ are called basis variables

Consider the following reduced row echelon form

$$
\left(\begin{array}{llll|l}
1 & 1 & 0 & 2 & 3 \\
0 & 0 & 1 & 2 & 1
\end{array}\right)
$$

Solution Space:

$$
L=\left\{\left.\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
3 \\
0 \\
1 \\
0
\end{array}\right)+\lambda_{1} \cdot\left(\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right)+\lambda_{2} \cdot\left(\begin{array}{c}
-2 \\
0 \\
-2 \\
1
\end{array}\right) \right\rvert\, \lambda_{1}, \lambda_{2} \in \mathbb{R}\right\}
$$

- Variables with pivot columns $\left(x_{1}, x_{3}\right)$ are called basis variables
- Variables without pivot columns (x_{2}, x_{4}) are called non-basis variables

Consider the following reduced row echelon form

$$
\left(\begin{array}{cccc|c}
1 & 1 & 0 & 2 & 3 \\
0 & 0 & 1 & 2 & 1
\end{array}\right)
$$

Solution Space:
$L=\left\{\left.\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)=\left(\begin{array}{l}3 \\ 0 \\ 1 \\ 0\end{array}\right)+\lambda_{1} \cdot\left(\begin{array}{c}-1 \\ 1 \\ 0 \\ 0\end{array}\right)+\lambda_{2} \cdot\left(\begin{array}{c}-2 \\ 0 \\ -2 \\ 1\end{array}\right) \right\rvert\, \lambda_{1}, \lambda_{2} \in \mathbb{R}\right\}$

- Variables with pivot columns $\left(x_{1}, x_{3}\right)$ are called basis variables

■ Variables without pivot columns (x_{2}, x_{4}) are called non-basis variables

Inverse Matrix

Let $A \in \mathbb{R}^{n \times n}$ be a quadratic matrix.
A matrix \boldsymbol{A}^{-1} is called Inverse Matrix of \boldsymbol{A} if

$$
\boldsymbol{A}^{-1} \cdot \boldsymbol{A}=\boldsymbol{I}_{n} \quad \text { and } \quad \boldsymbol{A} \cdot \boldsymbol{A}^{-1}=\boldsymbol{I}_{n}
$$

Inverse Matrix

Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ be a quadratic matrix.
A matrix \boldsymbol{A}^{-1} is called Inverse Matrix of \boldsymbol{A} if

$$
\boldsymbol{A}^{-1} \cdot \boldsymbol{A}=\boldsymbol{I}_{n} \quad \text { and } \quad \boldsymbol{A} \cdot \boldsymbol{A}^{-1}=\boldsymbol{I}_{n}
$$

Then

$$
\begin{array}{rlrl}
& & \boldsymbol{A} \boldsymbol{x} & =\boldsymbol{b} \\
\Leftrightarrow & \boldsymbol{A}^{-1} \boldsymbol{A} \boldsymbol{x} & =\boldsymbol{A}^{-1} \boldsymbol{b} \\
\Leftrightarrow & & \boldsymbol{I}_{n} \boldsymbol{x} & =\boldsymbol{A}^{-1} \boldsymbol{b} \\
\Leftrightarrow & & \mathbf{x} & =\boldsymbol{A}^{-1} \boldsymbol{b}
\end{array}
$$

Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ be a quadratic matrix.
A matrix \boldsymbol{A}^{-1} is called Inverse Matrix of \boldsymbol{A} if

$$
\boldsymbol{A}^{-1} \cdot \boldsymbol{A}=\boldsymbol{I}_{n} \quad \text { and } \quad \boldsymbol{A} \cdot \boldsymbol{A}^{-1}=\boldsymbol{I}_{n}
$$

Then

$$
\begin{array}{rlrl}
& & \boldsymbol{A} \boldsymbol{x} & =\boldsymbol{b} \\
\Leftrightarrow & \boldsymbol{A}^{-1} \boldsymbol{A} \boldsymbol{x} & =\boldsymbol{A}^{-1} \boldsymbol{b} \\
\Leftrightarrow & & \boldsymbol{I}_{n} \boldsymbol{x} & =\boldsymbol{A}^{-1} \boldsymbol{b} \\
\Leftrightarrow & & \mathbf{x} & =\boldsymbol{A}^{-1} \boldsymbol{b}
\end{array}
$$

Theorem

\boldsymbol{A}^{-1} exists $\Leftrightarrow \boldsymbol{A} \mathbf{x}=\boldsymbol{b}$ has a unique solution \Leftrightarrow The rank of \boldsymbol{A} is n.

Computation of the Inverse

- Create the augmented Matrix $\left[\boldsymbol{A} \mid \boldsymbol{I}_{n}\right]$
- Compute the reduced row echelon form
- If the reduced form is $\left[\boldsymbol{I}_{n} \mid \boldsymbol{B}\right]$ then \boldsymbol{B} is the inverse of \boldsymbol{A}

Computation of the Inverse

- Create the augmented Matrix $\left[\boldsymbol{A} \mid \boldsymbol{I}_{n}\right]$
- Compute the reduced row echelon form

■ If the reduced form is $\left[\boldsymbol{I}_{n} \mid \boldsymbol{B}\right]$ then \boldsymbol{B} is the inverse of \boldsymbol{A}
Example:

$$
\boldsymbol{A}=\left(\begin{array}{ll}
2 & 5 \\
1 & 3
\end{array}\right)
$$

- Create the augmented Matrix $\left[\boldsymbol{A} \mid \boldsymbol{I}_{n}\right]$
- Compute the reduced row echelon form
- If the reduced form is $\left[\boldsymbol{I}_{n} \mid \boldsymbol{B}\right]$ then \boldsymbol{B} is the inverse of \boldsymbol{A}

Example:

$$
\begin{aligned}
\boldsymbol{A} & =\left(\begin{array}{ll}
2 & 5 \\
1 & 3
\end{array}\right) \\
{\left[\boldsymbol{A} \mid \boldsymbol{I}_{n}\right] } & =\left(\begin{array}{ll|ll}
2 & 5 & 1 & 0 \\
1 & 3 & 0 & 1
\end{array}\right) \rightsquigarrow\left(\begin{array}{cc|cc}
1 & 0 & 3 & -5 \\
0 & 1 & -1 & 2
\end{array}\right)
\end{aligned}
$$

Computation of the Inverse

- Create the augmented Matrix $\left[\boldsymbol{A} \mid \boldsymbol{I}_{n}\right]$
- Compute the reduced row echelon form

■ If the reduced form is $\left[\boldsymbol{I}_{n} \mid \boldsymbol{B}\right]$ then \boldsymbol{B} is the inverse of \boldsymbol{A}
Example:

$$
\begin{aligned}
\boldsymbol{A} & =\left(\begin{array}{ll}
2 & 5 \\
1 & 3
\end{array}\right) \\
{\left[\boldsymbol{A} \mid \boldsymbol{I}_{n}\right] } & =\left(\begin{array}{ll|ll}
2 & 5 & 1 & 0 \\
1 & 3 & 0 & 1
\end{array}\right) \rightsquigarrow\left(\begin{array}{cc|cc}
1 & 0 & 3 & -5 \\
0 & 1 & -1 & 2
\end{array}\right) \\
\boldsymbol{A}^{-1} & =\left(\begin{array}{cc}
3 & -5 \\
-1 & 2
\end{array}\right)
\end{aligned}
$$

Linear Independent Vectors

A family of k vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k} \in \mathbb{R}^{n}$ is called linear independent if the only solution of

$$
\boldsymbol{v}_{1} x_{1}+\boldsymbol{v}_{2} x_{2}+\ldots+v_{k} x_{k}=0
$$

is $x_{1}=x_{2}=\ldots=x_{k}=0$.

linear independent vectors

Linear Independent Vectors

A family of k vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k} \in \mathbb{R}^{n}$ is called linear independent if the only solution of

$$
\boldsymbol{v}_{1} x_{1}+\boldsymbol{v}_{2} x_{2}+\ldots+v_{k} x_{k}=0
$$

is $x_{1}=x_{2}=\ldots=x_{k}=0$.

linear dependent vectors
v, w lie on a line $\quad u, v, w$ lie on plane

A family of k vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k} \in \mathbb{R}^{n}$ is called linear independent if the only solution of

$$
\boldsymbol{v}_{1} x_{1}+v_{2} x_{2}+\ldots+v_{k} x_{k}=0
$$

is $x_{1}=x_{2}=\ldots=x_{k}=0$.
The vectors are linear independent if the matrix

$$
\left(\begin{array}{cccc}
v_{1,1} & v_{2,1} & \ldots & v_{k, 1} \\
v_{1,2} & v_{2,2} & \ldots & v_{k, 2} \\
\vdots & \vdots & \ddots & \vdots \\
v_{1, n} & v_{2, n} & \ldots & v_{k, n}
\end{array}\right)
$$

has rank k.

